Designing mosaic landscapes for sustainable outcome: Evaluating land-use options on ecosystem service provisioning in southwestern Ghana

J Environ Manage. 2024 Feb 27:353:120127. doi: 10.1016/j.jenvman.2024.120127. Epub 2024 Feb 6.

Abstract

The landscape in southwestern Ghana faces rampant modification due to socio-economic activities, posing threats to ecosystem service provision and environmental sustainability. Addressing these threats involves empowering land-use actors to design landscapes that offer multiple benefits concurrently. This study employs a geodesign framework, integrating participatory ecosystem service assessment and spatial simulations. This geodesign framework aims to design the landscape in a collaborative manner in a way that supports multiple benefits concurrently, mitigating the threats posed by landscape modification. Reflecting on local land-use perceptions during a workshop, we developed land-use options and land management strategies based on selected land-cover types. We identified urban greens, open space restoration, rubber mixed-stands, mangrove restoration, selective-cutting land preparation, soil conservation, and relay cropping as land-use options to target selected land-cover types of shrubland, cropland, smallholder rubber, smallholder palm, wetland, and settlement. The land management strategies translated into landscape scenarios based on local need conditions. We generated the local need conditions which translated into the landscape scenarios by reflecting on the location of land-cover types, 'change-effect' conditions within rubber, settlement, and cropland, and 'no-change'conditions within cropland. Results indicate synergies between the created landscape scenarios and ecosystem service provisioning, with 'no-change' within cropland providing the highest synergy and 'change-effect' within rubber providing the least synergy. Spatial modeling of local perceptions forms the novelty of this study, as the fusion of participatory assessments and spatial modeling allows for a more holistic understanding of the landscape, its services, and the potential implications of different management strategies. The geodesign framework facilitated the design of the complex heterogeneous landscape to visualize possibilities of maximizing multiple benefits and can be used for future planning on the landscape.

Keywords: Geodesign; Ghana; Landscape sustainability; Local perceptions; Multifunctional landscapes; Spatial simulations.

MeSH terms

  • Conservation of Natural Resources / methods
  • Ecosystem*
  • Ghana
  • Rubber*
  • Soil

Substances

  • Rubber
  • Soil