Exploring the Underlying Correlation between the Structure and Ionic Conductivity in Halide Spinel Solid-State Electrolytes with Neutron Diffraction

Inorg Chem. 2024 Feb 19;63(7):3418-3427. doi: 10.1021/acs.inorgchem.3c04094. Epub 2024 Feb 7.

Abstract

The development of cutting-edge solid-state electrolytes (SSEs) entails a deep understanding of the underlying correlation between the structure and ionic conductivity. Generally, the structure of SSEs encompasses several interconnected crystal parameters, and their collective influence on Li+ transport can be challenging to discern. Here, we systematically investigate the structure-function relationship of halide spinel LixMgCl2+x (2 ≥ x ≥ 1) SSEs. A nonmonotonic trend in the ionic conductivity of LixMgCl2+x SSEs has been observed, with the maximum value of 8.69 × 10-6 S cm-1 achieved at x = 1.4. The Rietveld refinement analysis, based on neutron diffraction data, has revealed that the crystal parameters including cell parameters, Li+ vacancies, Debye-Waller factor, and Li-Cl bond length assume diverse roles in influencing ionic conductivity of LixMgCl2+x at different stages within the range of x values. Besides, mechanistic analysis demonstrates Li+ transport along three-dimensional pathways, which primarily governs the contribution to ionic conductivity of LixMgCl2+x SSEs. This study has shed light on the collective influence of crystal parameters on Li+ transport behaviors, providing valuable insights into the intricate relationship between the structure and ionic conductivity of SSEs.