Fundamental Understanding of Hydrogen Evolution Reaction on Zinc Anode Surface: A First-Principles Study

Nanomicro Lett. 2024 Feb 6;16(1):111. doi: 10.1007/s40820-024-01337-0.

Abstract

Hydrogen evolution reaction (HER) has become a key factor affecting the cycling stability of aqueous Zn-ion batteries, while the corresponding fundamental issues involving HER are still unclear. Herein, the reaction mechanisms of HER on various crystalline surfaces have been investigated by first-principle calculations based on density functional theory. It is found that the Volmer step is the rate-limiting step of HER on the Zn (002) and (100) surfaces, while, the reaction rates of HER on the Zn (101), (102) and (103) surfaces are determined by the Tafel step. Moreover, the correlation between HER activity and the generalized coordination number ([Formula: see text]) of Zn at the surfaces has been revealed. The relatively weaker HER activity on Zn (002) surface can be attributed to the higher [Formula: see text] of surface Zn atom. The atomically uneven Zn (002) surface shows significantly higher HER activity than the flat Zn (002) surface as the [Formula: see text] of the surface Zn atom is lowered. The [Formula: see text] of surface Zn atom is proposed as a key descriptor of HER activity. Tuning the [Formula: see text] of surface Zn atom would be a vital strategy to inhibit HER on the Zn anode surface based on the presented theoretical studies. Furthermore, this work provides a theoretical basis for the in-depth understanding of HER on the Zn surface.

Keywords: Aqueous Zn-ion battery; Coordination number; First-principles calculation; Hydrogen evolution reaction; Zn anode.