Reliability and Validity of Cycling Sprint Performance at Isolinear Mode Without Torque Factor: A Preliminary Study in Well-Trained Male Cyclists

Res Q Exerc Sport. 2024 Feb 6:1-8. doi: 10.1080/02701367.2023.2298752. Online ahead of print.

Abstract

Purpose: This study aimed to compare the performance-derived parameters utilizing isolinear (ISOLIN) and isovelocity (ISOVEL) sprint cycling modes. Method: For that, 20 male trained cyclists performed 2 sprints of 7 s on an electromagnetically braked cycle ergometer in ISOLIN and six sprints in ISOVEL mode with cadences between 90 and 180 rpm, each separated by 3-min. A linear function modeled the sprints within each mode to extrapolate maximal cadence (CMAX) and torque (TMAX), and a quadratic function was used to extrapolate the apex defined as optimal cadence power (OPTCAD) and peak power output (PMAX). Fifteen subjects performed another 4 sprints at ISOLIN mode on different days to verify the reliability. Results: The measures from the power-cadence relationship were not different between the ISOLIN and ISOVEL modes. Although significant differences were detected in the T-C relationship, TMAX was greater at ISOLIN than ISOVEL (p = .006). On the other hand, CMAX was higher at ISOVEL than ISOLIN (p < .001). The correlation between parameters was large to very large (r = 0.51 to 0.89). However, high limits of agreement were verified. The ISOLIN presented consistency during the trials, and the random errors were acceptable (CV = 5.3% to 11.5%). Conclusion: Using the power-cadence relationship, PMAX and OPTCAD could be detected similarly between the two sprint modes (ISOLIN and ISOVEL). Thus, the findings demonstrated that a single ISOLIN sprint test could be a suitable tool for quantifying the time course of muscle fatigue during and after cycling exercises in well-trained male cyclists.

Keywords: Cadence; force-velocity test; isokinetic cycling; maximal power.