Detection methods and dynamic characteristics of specific antibodies in patients with COVID-19: A review of the early literature

Heliyon. 2024 Jan 24;10(3):e24580. doi: 10.1016/j.heliyon.2024.e24580. eCollection 2024 Feb 15.

Abstract

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a global pandemic. Early and accurate diagnosis and quarantine remain the most effective mitigation strategy. Although reverse transcriptase polymerase chain reaction (RT-qPCR) is the gold standard for COVID-19 diagnosis, recent studies suggest that nucleic acids were undetectable in a significant number of cases with clinical features of COVID-19.Serological assays for SARS-CoV-2 play a role in diagnosis of COVID-19, in understanding viral epidemiology and screening convalescent sera for therapeutic and prophylactic purposes, to better understand the immune response to the virus, and to assess the degree and duration of the response of specific antibodies. In this article, we retrieved PubMed, Embase, China National Knowledge Infrastructure (CNKI) and WEB OF SCI databases for articles and reviews published before December 1, 2022. Using "IgM, IgG,IgA, neutralizing antibody, specific antibody,COVID-19, dynamic characteristics" as keywords, and comprehensively reviewed on their basis.According to the authors' criteria, only articles deemed relevant were included, covering original articles, case series, experimental studies, reviews, and case reports. Articles on performance evaluation, opinion pieces, and technical issues were excluded. From the onset of COVID-19 symptoms, the median time of seroconversion was 11 days for immunoglobulin A (IgA), the median time of peak antibody titer was 23 (16-30 days) for IgA.Immunoglobulin M (IgM) is detected prior to immunoglobulin G (IgG), peaking 2-5 weeks post symptom onset and detectable for a minimum of 8 weeks in the immunocompetent.Neutralizing antibodies were earliest detectable within 6-7 days following disease onset, with levels increasing until days 14-22 before levelling and then decreasing, but titres were lower in clinically mild disease. Different clinical types of patients showed different antibody responses to SARS-CoV-2, with severe COVID-19 patients > non-severe COVID-19 patients > asymptomatic infected persons, but no difference in the early stage of the disease. Usually, IgM and IgA antibodies are detectable earlier than IgG antibodies.IgA antibodys plays an important role in local mucosal immunity.Detection of IgM antibodies tends to indicate recent exposure to SARS-CoV-2, whereas the detection of COVID-19 IgG antibodies indicates virus exposure some time ago. The detection of potent neutralizing antibodies in convalescent plasma is important in the context of development of therapeutics and vaccines.With the emergence of immune escape variants of SARS-CoV-2, humoral immunity is being challenged, and a detailed understanding of Specific antibodies is critical to guide vaccine design strategies and antibody-mediated therapies.

Keywords: ,COVID-19; Dynamic characteristics; IgA; IgG; IgM; Neutralizing antibody; Specific antibody.

Publication types

  • Review