NHC-Supported 2-Sila and 2-Germavinylidenes: Synthesis, Dynamics, First Reactivity and Theoretical Studies

Angew Chem Int Ed Engl. 2024 Feb 6:e202400227. doi: 10.1002/anie.202400227. Online ahead of print.

Abstract

2-tetrelavinylidenes (C=EH2 ; E=Si, Ge) are according to quantum chemical studies the least stable isomers on the [E,C,2H] potential energy hypersurface isomerizing easily via the trans-bent tetrelaacetylenes HE≡CH to the thermodynamically most stable 1-tetrelavinylidenes (E=CH2 ). Consequently, experimental studies on 2-tetrelavinylidenes (C=ER2 ) and their derivatives are lacking. Herein we report experimental and theoretical studies of the first N-heterocyclic carbene (NHC) supported 2-silavinylidene (NHC)C=SiBr(Tbb) (1-Si: NHC=C[N(Dipp)CH]2 , Dipp=2,6-diisopropylphenyl, Tbb=2,6-bis[bis(trimethylsilyl)methyl]-4-tert-butylphenyl) and the isovalent 2-germavinylidenes (NHC)C=GeBr(R) (1-Ge, 1-GeMind: R=Tbb, Mind (1,1,3,3,5,5,7,7-octamethyl-s-hydrindacene-4-yl)). The NHC-supported 2-tetrelavinylidenes were obtained selectively from the 1,2-dibromoditetrelenes (E)-(R)BrE=EBr(R) using the diazoolefin (NHC)CN2 as vinylidene transfer reagent. 1-E (E=Si, Ge) have a planar vinylidene core, a bent-dicoordinated vinylidene carbon atom (CVNL ), a very short E=CVNL bond and an almost orthogonal orientation of the NHC five-membered ring to the vinylidene core. Quantum chemical analysis of the electronic structures of 1-E suggest a significantly bent 1-tetrelaallene and tetrelyne character. NMR studies shed light into the dynamics of 1-E involving NHC-rotation around the CVNL -CNHC bond with a low activation barrier. Furthermore, the synthetic potential of 1-E is demonstrated by the synthesis and full characterization of the unprecedented NHC-supported bromogermynes BrGe=C(EBr2 Tbb)(NHC) (2-SiGe: E=Si; 2-GeGe: E=Ge).

Keywords: N-heterocyclic carbenes; diazoolefins; heavier vinylidenes; main group elements; multiple bonds.