Effect of Temperature, Oil Type, and Copolymer Concentration on the Long-Term Stability of Oil-in-Water Pickering Nanoemulsions Prepared Using Diblock Copolymer Nanoparticles

Langmuir. 2024 Feb 5;40(7):3702-3714. doi: 10.1021/acs.langmuir.3c03423. Online ahead of print.

Abstract

A poly(glycerol monomethacrylate) (PGMA) precursor was chain-extended with 2,2,2-trifluoroethyl methacrylate (TFEMA) via reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerization. Transmission electron microscopy (TEM) studies confirmed the formation of well-defined PGMA52-PTFEMA50 spherical nanoparticles, while dynamic light scattering (DLS) studies indicated a z-average diameter of 26 ± 6 nm. These sterically stabilized diblock copolymer nanoparticles were used as emulsifiers to prepare oil-in-water Pickering nanoemulsions: either n-dodecane or squalane was added to an aqueous dispersion of nanoparticles, followed by high-shear homogenization and high-pressure microfluidization. The Pickering nature of such nanoemulsion droplets was confirmed via cryo-transmission electron microscopy (cryo-TEM). The long-term stability of such Pickering nanoemulsions was evaluated by analytical centrifugation over a four-week period. The n-dodecane droplets grew in size significantly faster than squalane droplets: this is attributed to the higher aqueous solubility of the former oil, which promotes Ostwald ripening. The effect of adding various amounts of squalane to the n-dodecane droplet phase prior to emulsification was also explored. The addition of up to 40% (v/v) squalane led to more stable nanoemulsions, as judged by analytical centrifugation. The nanoparticle adsorption efficiency at the n-dodecane-water interface was assessed by gel permeation chromatography when using nanoparticle concentrations of 4.0, 7.0, or 10% w/w. Increasing the nanoparticle concentration not only produced smaller droplets but also reduced the adsorption efficiency, as confirmed by TEM studies. Furthermore, the effect of varying the nanoparticle concentration (2.5, 5.0, or 10% w/w) on the long-term stability of n-dodecane-in-water Pickering nanoemulsions was explored over a four-week period. Nanoemulsions prepared at higher nanoparticle concentrations were more unstable and exhibited a faster rate of Ostwald ripening. The nanoparticle adsorption efficiency was monitored for an aging nanoemulsion prepared at a copolymer concentration of 2.5% w/w. As the droplets ripened over time, the adsorption efficiency remained constant (∼97%). This suggests that nanoparticles desorbed from the shrinking smaller droplets and then readsorbed onto larger droplets over time. Finally, the effect of temperature on the stability of Pickering nanoemulsions was examined. Storing these Pickering nanoemulsions at elevated temperatures led to faster rates of Ostwald ripening, as expected.