Preparation of a Single-Cell Suspension from Mouse Carotid Arteries for Single-Cell Sequencing

J Vis Exp. 2024 Jan 19:(203). doi: 10.3791/65863.

Abstract

Carotid arteries are major blood vessels in the neck that supply blood and oxygen to the brain, but carotid stenosis occurs when carotid arteries are clogged by plaque. Revealing the cellular composition of the carotid artery at the single-cell level is essential for treating carotid atherosclerosis. However, there is no ready-to-use protocol for the preparation of single-cell suspensions from carotid arteries. To obtain a suitable protocol for the dissociation of normal carotid arteries at the single-cell level with less damage to cells, we designed a two-step digestion method by integrating the digestion process of collagenase/DNase and trypsin. Acridine orange/propidium iodide (AO/PI) dual-fluorescence counting was used to detect cell viability and concentration, and it was found that the single-cell suspension satisfied the requirements for single-cell sequencing, with the viability of cells over 85% and a high cell concentration. After single-cell data processing, a median of ~2500 transcripts per cell were detected in each carotid artery cell. Notably, a variety of cell types of the normal carotid artery, including vascular smooth muscle cells (VSMCs), fibroblasts, endothelial cells (ECs), and macrophages and dendritic cells (Mφ/DCs), were concurrently detectable. This protocol may be applied to prepare a single-cell suspension of blood vessels from other tissues with appropriate modifications.

Publication types

  • Video-Audio Media

MeSH terms

  • Animals
  • Carotid Arteries
  • Carotid Artery Diseases* / metabolism
  • Carotid Artery, Common / metabolism
  • Endothelial Cells / metabolism
  • Mice
  • Plaque, Atherosclerotic* / metabolism