High-speed flexible near-infrared organic photodiode for optical communication

Natl Sci Rev. 2023 Dec 11;11(3):nwad311. doi: 10.1093/nsr/nwad311. eCollection 2024 Mar.

Abstract

Optical communication is a particularly compelling technology for tackling the speed and capacity bottlenecks in data communication in modern society. Currently, the silicon photodetector plays a dominant role in high-speed optical communication across the visible-near-infrared spectrum. However, its intrinsic rigid structure, high working bias and low responsivity essentially limit its application in next-generation flexible optoelectronic devices. Herein, we report a narrow-bandgap non-fullerene acceptor (NFA) with a remarkable π-extension in the direction of both central and end units (CH17) with respect to the Y6 series, which demonstrates a more effective and compact 3D molecular packing, leading to lower trap states and energetic disorders in the photoactive film. Consequently, the optimized solution-processed organic photodetector (OPD) with CH17 exhibits a remarkable response time of 91 ns (λ = 880 nm) due to the high charge mobility and low parasitic capacitance, exceeding the values of most commercial Si photodiodes and all NFA-based OPDs operating in self-powered mode. More significantly, the flexible OPD exhibits negligible performance attenuation (<1%) after bending for 500 cycles, and maintains 96% of its initial performance even after 550 h of indoor exposure. Furthermore, the high-speed OPD demonstrates a high data transmission rate of 80 MHz with a bit error rate of 3.5 [Formula: see text] 10-4, meaning it has great potential in next-generation high-speed flexible optical communication systems.

Keywords: flexible organic photodetector; high-speed NIR organic photodetector; light fidelity; narrow-bandgap non-fullerene acceptors; optical communication.