In vitro, in vivo metabolism and quantification of the novel synthetic opioid N-piperidinyl etonitazene (etonitazepipne)

Clin Chem Lab Med. 2024 Feb 5. doi: 10.1515/cclm-2023-1360. Online ahead of print.

Abstract

Objectives: N-piperidinyl etonitazene (etonitazepipne) is a newly synthesized opioid related to the 2-benzylbenzimidazole analog class. Etonitazepipne has been formally notified and placed under intensive monitoring in Europe in January 2022. Nitazenes have high affinity at µ-opioid receptor (MOR). Etonitazepipne, specifically shows a EC50 of 2.49 nM, suggesting about 50 times higher potency combined with higher efficacy compared to morphine. Antinociceptive potency l ('hot plate test' with rats) was 192-fold greater than that of morphine.

Methods: Here we report on a post-mortem case involving etonitazepipne and its quantification using a standard addition method (SAM) through liquid chromatography tandem mass spectrometry (LC-MS/MS). In addition, characterization and identification of phase I human metabolites using in vitro assay based on pooled human liver microsomes (pHLM) was performed along with the analysis of authentic urine samples by means of high-performance liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS).

Results: The concentration of etonitazepipne in post-mortem blood and urine was 8.3 and 11 ng/mL, respectively. SAM was validated by assessing the following parameters: intraday and interday repeatability, matrix effect and recovery rate in post-mortem blood. A total of 20 and 14 metabolites were identified after pHLM incubation and urine analysis, respectively. Most pronounced in vitro and in vivo transformations were O-deethylation, hydroxylation, ketone reduction, and combinations thereof.

Conclusions: Considering small traces of the parent drug often found in real cases, the identification of metabolic biomarkers is crucial to identify exposure to this drug. O-deethylated, oxidated metabolites, and combination thereof are proposed as urinary biomarkers along with the parent compound.

Keywords: N-piperidinyl etonitazene; case-report; metabolism; nitazene; standard addition.