Influence of sesame cake on physicochemical, antioxidant and sensorial characteristics of fortified wheat breads

Food Res Int. 2024 Feb:178:113980. doi: 10.1016/j.foodres.2024.113980. Epub 2024 Jan 4.

Abstract

Incorporation of two sesame cake preparations, differing in fat, 11 % (LF) and 17 % (HF), and protein, 51 % (LF) and 44 % (HF), contents, respectively, into breads at 6, 12 and 20 % wheat flour substitution levels, led to enriched end-products with antioxidants, suitable also to carry the 'high protein' and 'fiber source' nutrition claims (at ≥ 12 % substitution level). Sesame cake decreased wheat dough resistance to mixing and extension, and peak viscosity (empirical rheology), in a concentration-dependent manner, being more pronounced for LF formulations. Breads with LF incorporation ≥ 12 % had lower specific volumes and harder crumb (texture analysis) throughout storage, than control (100 % wheat flour); however, such adverse effects were diminished in HF bread formulations due to the plasticizing and emulsifying action of the sesame cake fat. Calorimetry showed that the sesame cake had no effect on starch retrogradation, but enhanced amylose-lipid complex formation. Antioxidant activity (ABTS, DPPH and FRAP assays), and phenolic acids (ferulic, p-coumaric and sinapic) and lignan (sesaminol glucosides and sesamolin) contents, determined by HPLC-DAD-MS, were higher in LF breads than their HF counterparts. The presence of some sulfur (off-flavor) and pyrazine (nutty flavor) compounds (SPME-GC-MS), as well as the sesame flavor and bitterness (sensory analysis) were of higher intensity in HF breads, while the 6 % LF product received the highest overall acceptability score among all fortified products. Overall, the sesame cake can be a promising ingredient for production of functional wheat bread depending on its composition and fortification level.

Keywords: Bread DSC analysis; Bread texture analysis; Dough rheology; Lignans; Phenolic acids; Volatile compounds.

MeSH terms

  • Antioxidants* / analysis
  • Bread / analysis
  • Flour / analysis
  • Sesamum*
  • Triticum / chemistry

Substances

  • Antioxidants