Prenatal exposure to metal mixtures and childhood temporal processing in the PROGRESS Birth Cohort Study: Modification by childhood obesity

Sci Total Environ. 2024 Mar 20:917:170576. doi: 10.1016/j.scitotenv.2024.170576. Epub 2024 Feb 1.

Abstract

Children are frequently exposed to various biological trace metals, some essential for their development, while others can be potent neurotoxicants. Furthermore, the inflammatory and metabolic conditions associated with obesity may interact with and amplify the impact of metal exposure on neurodevelopment. However, few studies have assessed the potential modification effect of body mass index (BMI). As a result, we investigated the role of child BMI phenotype on the relationship between prenatal exposure to metal mixtures and temporal processing. Leveraging the PROGRESS birth cohort in Mexico City, children (N = 563) aged 6-9 years completed a Temporal Response Differentiation (TRD) task where they had to hold a lever down for 10-14 s. Blood and urinary metal (As, Pb, Cd, and Mn) measurements were collected from mothers in the 2nd and 3rd trimesters. Child BMI z-scores were dichotomized to normal (between -2 and +0.99) and high (≥1.00). Covariate-adjusted weighted quantile sum (WQS) regression models were used to estimate and examine the combined effect of metal biomarkers (i.e., blood and urine) on TRD measures. Effect modification by the child's BMI was evaluated using 2-way interaction terms. Children with a high BMI and greater exposure to the metal mixture during prenatal development exhibited significant temporal processing deficits compared to children with a normal BMI. Notably, children with increased exposure to the metal mixture and higher BMI had a decrease in the percent of tasks completed (β = -10.13; 95 % CI: -19.84, -0.42), number of average holds (β = -2.15; 95 % CI: -3.88, -0.41), longer latency (β = 0.78; 95 % CI: 0.13, 1.44), and greater variability in the standard deviation of the total hold time (β = 2.08; 95 % CI: 0.34, 3.82) compared to normal BMI children. These findings implicate that high BMI may amplify the effect of metals on children's temporal processing. Understanding the relationship between metal exposures, temporal processing, and childhood obesity can provide valuable insights for developing targeted environmental interventions.

Keywords: Childhood obesity; Metal mixtures; Neurodevelopment; Temporal processing; Trace metals; Weighted quantile sum (WQS) regression.

MeSH terms

  • Child
  • Cohort Studies
  • Female
  • Humans
  • Metals / toxicity
  • Pediatric Obesity*
  • Pregnancy
  • Prenatal Exposure Delayed Effects* / epidemiology
  • Time Perception*

Substances

  • Metals