Skeletal site-specific effects of jump training on bone mineral density in adults: a systematic review and meta-analysis

J Sports Sci. 2023 Dec;41(23):2063-2076. doi: 10.1080/02640414.2024.2312052. Epub 2024 Feb 2.

Abstract

Preserving or preventing declines in bone mineral density (BMD) is imperative. As jumping is a high-impact bone-loading action, this meta-analysis evaluated the efficacy of jump training to improve BMD and bone turnover relative to non-jumping controls in men and women > 18 years, following Preferred Reported Items for Systematic Reviews and Meta-Analysis guidelines. PubMed and COCHRANE Library databases were searched until February 2022. Fifteen articles (19 jumping-trials) met the predetermined search criteria. Eighteen trials were included for BMD data (n = 666 participants). There was a significant small-moderate effect of jumping on femoral neck BMD (%mean difference: 95%CI, +1.50%: 0.83%; 2.17%, p < 0.0001), that remained significant after sub-analysis by age for both younger (+1.81%: 0.98%; 2.65%) and older adults (+1.03%: 0.02%; 2.03%). BMD of total hip (+1.26%: 0.56%; 1.96% vs + 0.06%: -0.96%; 1.08%), and trochanter (+0.84%: 0.20%; 1.48% vs -0.16%: -1.08%; 0.76%) increased significantly with jump training only in younger adults and non-significantly at the lumbar spine (+0.84%: -0.02%; 1.7% vs -0.09%: -0.96%; 0.77%) only in younger but not older adults, respectively. The BMD response to jump training appears to be site-specific, with the highest sensitivity at the femoral neck. No dose-response effect suggests moderate certainty of a gain in femoral neck BMD when performing the median jump-load of 50 jumps four times weekly.

Keywords: Adults; bone mineral density; bone turnover; jumping; osteoporosis.

Publication types

  • Meta-Analysis
  • Systematic Review
  • Review

MeSH terms

  • Aged
  • Bone Density* / physiology
  • Female
  • Femur
  • Femur Neck* / physiology
  • Humans
  • Lumbar Vertebrae / physiology
  • Male