A remodeled ivermectin polycaprolactone-based nanoparticles for inhalation as a promising treatment of pulmonary inflammatory diseases

Eur J Pharm Sci. 2024 Apr 1:195:106714. doi: 10.1016/j.ejps.2024.106714. Epub 2024 Jan 30.

Abstract

In recent years, ivermectin (IVM), an antiparasitic drug of low water solubility and poor oral bioavailability, has shown a profound effect on inflammatory mediators involved in diseases, such as acute lung injury, lung fibrosis, and COVID-19. In order to maximize drug bioavailability, polymeric nanoparticles can be delivered through nebulizers for pulmonary administration. The aim of this study was to prepare IVM-loaded polycaprolactone (PCL) nanoparticles (NPs) by solvent evaporation method. Box-Benkhen design (BBD) was used to optimize entrapment efficiency (Y1), percent drug release after 6 h (Y2), particle size (Y3), and zeta potential (Y4). A study was conducted examining the effects of three independent variables: PCL-IVM ratio (A), polyvinyl alcohol (PVA) concentration (B), and sonication time (C). The optimized formula was also compared to the oral IVM dispersion for lung deposition, in-vivo behavior, and pharmacokinetic parameters. The optimized IVM-PCL-NPs formulation was spherical in shape with entrapment efficiency (% EE) of 93.99 ± 0.96 %, about 62.71 ± 0.53 % released after 6 h, particle size of 100.07 ± 0.73 nm and zeta potential of -3.30 ± 0.23 mV. Comparing the optimized formulation to IVM-dispersion, the optimized formulation demonstrated greater bioavailability with greater area under the curve AUC0-t of 710.91 ± 15.22 μg .ml-1.h for lung and 637.97 ± 15.43 μg .ml-1.h for plasma. Based on the results, the optimized NPs accumulated better in lung tissues, exhibiting a twofold longer residence time (MRT 4.78 ± 0.55 h) than the IVM-dispersion (MRT 2.64 ± 0.64 h). The optimized nanoparticle formulation also achieved higher cmax (194.90 ± 5.01 μg/ml), and lower kel (0.21 ± 0.04 h-1) in lungs. Additionally, the level of inflammatory mediators was markedly reduced. To conclude, inhalable IVM-PCL-NPs formulation was suitable for the pulmonary delivery and may be one of the most promising approaches to increase IVM bioavailability for the successful treatment of a variety of lung diseases.

Keywords: Inflammatory mediators; Ivermectin; Nanoparticles; Nebulization; Polycaprolactone; Pulmonary drug delivery.

MeSH terms

  • Humans
  • Inflammation Mediators
  • Ivermectin / pharmacokinetics
  • Lung
  • Lung Diseases*
  • Nanoparticles*
  • Particle Size
  • Polyesters*

Substances

  • Ivermectin
  • polycaprolactone
  • Inflammation Mediators
  • Polyesters