Spatiotemporal dynamics of wetlands and their future multi-scenario simulation in the Yellow River Delta, China

J Environ Manage. 2024 Feb 27:353:120193. doi: 10.1016/j.jenvman.2024.120193. Epub 2024 Feb 1.

Abstract

Wetlands, known as the "kidney of the earth", are an important component of global ecosystems. However, they have been changed under multiple stresses in recent decades, which is especially true in the Yellow River Delta. This study examined the spatiotemporal change characteristics of wetlands in the Yellow River Delta from 1980 to 2020 and predicted detailed wetland changes from 2020 to 2030 with the patch-generating land use simulation (PLUS) model under four scenarios, namely, the natural development scenario (NDS), the farmland protection scenario (FPS), the wetland protection scenario (WPS) and the harmonious development scenario (HDS). The results showed that wetlands increased 709.29 km2 from 1980 to 2020 overall, and the wetland types in the Yellow River Delta changed divergently. Over the past four decades, the tidal flats have decreased, whereas the reservoirs and ponds have increased. The gravity center movement of wetlands differed among the wetland types, with artificial wetlands moving to the northwest and natural wetlands moving to the south. The movement distance of the gravity center demonstrated apparent phase characteristics, and an abrupt change occurred from 2005 to 2010. The PLUS model was satisfactory, with an overall accuracy (OA) value greater than 83.48 % and an figure of merit (FOM) value greater than 0.1164. From 2020 to 2030, paddy fields and tidal flats decreased, whereas natural water, marshes and reservoirs and ponds increased under the four scenarios. The WPS was a relatively ideal scenario for wetlands, and the HDS was an alternative scenario for wetland restoration and food production. In the future, more attention should be paid to restoring natural wetlands to prevent further degradation in the Yellow River Delta. This study provides insights into new understandings of historical and future changes in wetlands and may have implications for wetland ecosystem protection and sustainable development.

Keywords: Multi-scenario simulation; PLUS model; Spatiotemporal change; Wetland; Yellow River Delta.

MeSH terms

  • China
  • Conservation of Natural Resources
  • Ecosystem*
  • Rivers
  • Sustainable Development
  • Wetlands*