Tailoring Bi2Se3 Topological Insulator for Visible-NIR Photodetectors with Schottky Contacts Using Liquid Phase Exfoliation

ACS Appl Mater Interfaces. 2024 Feb 14;16(6):8158-8168. doi: 10.1021/acsami.3c15315. Epub 2024 Feb 1.

Abstract

Layered semiconductors of the V-VI group have attracted considerable attention in optoelectronic applications owing to their atomically thin structures. They offer thickness-dependent optical and electronic properties, promising ultrafast response time, and high sensitivity. Compared to the bulk, 2D bismuth selenide (Bi2Se3) is recently considered a highly promising material. In this study, 2D nanosheets are synthesized by prolonged sonication in two different solvents, such as N-methyl-2-pyrrolidone (NMP) and chitosan-acetic acid solution (CS-HAc), using the liquid-phase exfoliation (LPE) method. X-ray diffraction confirms the amorphous nature of exfoliated 2D nanosheets with maximum peak intensity at the same position (015) crystal plane as that obtained in its bulk counterpart. SEM confirms the thin 2D nanosheet-like morphology. Successful exfoliation of Bi2Se3 nanosheets up to five layers is achieved using CS-HAc solvent. The as-synthesized 2D nanosheets in different solvents are employed to fabricate the photodetector. At minimum selected power density, the photodetector fabricated using exfoliated ultrathin 2D nanosheets exhibits the highest range of responsivity, varying from 15 to 2.5 mA/W, and detectivity ranging from 2.83 × 109 to 6.37 × 107. Ultrathin 2D Bi2Se3 nanosheets have fast rise and fall times, ranging from 0.01 to 0.12 and 0.01 to 0.06 s, respectively, at different wavelengths. Ultrathin Bi2Se3 nanosheets have improved photodetection parameters as compared to multilayered nanosheets due to the high surface to volume ratio, reduced recombination and trapping of charge carrier, improved carrier confinement, and faster carrier transport due to the thin layer.

Keywords: Schottky contacts; fast response; liquid phase exfoliation; photodetection; topological insulator; ultrathin Bi2Se3.