Interstitial Boron-Modulated Porous Pd Nanotubes for Ammonia Electrosynthesis

Inorg Chem. 2024 Feb 12;63(6):3099-3106. doi: 10.1021/acs.inorgchem.3c04051. Epub 2024 Feb 1.

Abstract

Electrochemical conversion of nitrogen into ammonia at ambient conditions as a sustainable approach has gained significant attention, but it is still extremely challenging to simultaneously obtain a high faradaic efficiency (FE) and NH3 yield. In this work, the interstitial boron-doped porous Pd nanotubes (B-Pd PNTs) are constructed by combining the self-template reduction method with boron doping. Benefiting from distinctive one-dimensional porous nanotube architectonics and the incorporation of the interstitial B atoms, the resulting B-Pd PNTs exhibit high NH3 yield (18.36 μg h-1 mgcat.-1) and FE (21.95%) in neutral conditions, outperforming the Pd/PdO PNTs (10.4 μg h-1 mgcat.-1 and 8.47%). The present study provides an attractive method to enhance the efficiency of the electroreduction of nitrogen into ammonia by incorporating interstitial boron into porous Pd-based catalysts.