Radiation effect on silicon photonics chips for space quantum key distribution

Opt Express. 2024 Jan 15;32(2):2015-2028. doi: 10.1364/OE.507260.

Abstract

Quantum communication satellites have potential for applications in future quantum networks. Photonics integrated chips, due to their compact and lightweight nature, are well-suited for satellite deployment. However, the harsh radiation environment of space can cause permanent damage to these chips, resulting in degraded performance or complete loss of functionality. In this work, we conducted a series of radiation experiments to evaluate the effects of γ rays and high energy protons on quantum key distribution transmitter chips. The results suggest that the insertion loss of the chip is slightly reduced by about 1.5 dB after 100 krad (Si) γ ray irradiation, and further reduced by about 0.5 to 1 dB after 2.39 × 1011/cm2 proton radiation. The half-wave voltages, extinction ratios, and polarization angles are not changed significantly within the measurement error range. Our work proves the feasibility of deploying quantum constellations utilizing terminals based on photonics chips.