Experimental investigation into mechanical, thermal, and shape memory behavior of thermoresponsive PU/MXene shape memory polymer nanocomposite

Heliyon. 2024 Jan 4;10(2):e24014. doi: 10.1016/j.heliyon.2024.e24014. eCollection 2024 Jan 30.

Abstract

This research presents an experimental investigation into the mechanical, thermal, and shape memory behavior of a thermos-responsive polyurethane (PU) reinforced with 0-1.0 wt % of MXene (Ti3C2Tx) nanofiller. The PU/MXene nanocomposites were fabricated using sonication and injection molding route. The 0.5 wt % PU/MXene nanocomposite showed the optimum mechanical properties i.e. tensile modulus, tensile strength, and hardness value, which are improved by 22, 281, and 19 %, respectively, compared to pure PU. The improvement is observed in melting temperature (Tm), the heat of melting (hm), crystallization temperature (Tc), and the heat of crystallization (hc) results. The percentage of crystallinity revealed enhancements of 6 %, 18 %, 24 %, and 34 % for 0.1, 0.2, 0.3, and 0.5 wt % PU/MXene samples respectively compared to pure PU. The findings from the shape recovery experiments demonstrated that the inclusion of MXene has no impact on both the shape fixity and shape recovery performance. The PU/MXene nanocomposite with improved mechanical and thermal properties can find potential applications in robotics actuators, medical devices, sensors, etc.

Keywords: MXene; Mechanical properties; Polyurethane; Shape memory behavior; Shape memory polymer nanocomposite; Thermal properties.