Bioinformatic analysis of THAP9 transposase homolog: conserved regions, novel motifs

Curr Res Struct Biol. 2023 Nov 24:7:100113. doi: 10.1016/j.crstbi.2023.100113. eCollection 2024.

Abstract

THAP9 is a transposable element-derived gene that encodes the THAP9 protein, which is homologous to the Drosophila P-element transposase (DmTNP) and can cut and paste DNA. However, the exact functional role of THAP9 is unknown. Here, we perform structure prediction, evolutionary analysis and extensive in silico characterization of THAP9, including predicting domains and putative post-translational modification sites. Comparison of the AlphaFold-predicted structure of THAP9 with the DmTNP CryoEM structure, provided insights about the C2CH motif and other DNA binding residues, RNase H-like catalytic domain and insertion domain of the THAP9 protein. We also predicted previously unreported mammalian-specific post-translational modification sites that may play a role in the subcellular localization of THAP9. Furthermore, we observed that there are distinct organism class-specific conservation patterns of key functional residues in certain THAP9 domains.

Keywords: Evolutionary analysis; Protein sequence characterization; Transposase gene.