Mechanism of Ferulic Acid in PI3K/AKT Pathway and Research in Glioblastoma

Altern Ther Health Med. 2024 Jan 1:AT9917. Online ahead of print.

Abstract

Phenolic acids and their analogues in nature exist in many diseases of oxidative stress with beneficial effects on human health (such as cancer). Phenolic acids possess a variety of pharmacological activities, with anti-inflammatory, anticancer and cytotoxic, antioxidant, immunomodulatory, antimicrobial, insecticidal and other biological activities. Numerous in vitro and in vivo studies have shown that because phenolic acids have antioxidant capacity, they can reflect their strong anticancer potential by regulating cell growth and metastasis and promoting cancer cell death. Studies have shown that the consumption of natural polyphenols can significantly reduce the risk of cancer metastasis. A combination of phenolic acids with traditional chemoradiation or other polyphenols may be effective in reducing cancer spread.Ferulic acid is ubiquitous, and widely found in plants, such as angelica, chuanxiong, cohote, three, edge, reed root, tomato, sweet corn, and rice are produced by the metabolism of phenylalanine and tyrosine. It is the most abundant hydroxyl cassia bark-acid acid in the plant kingdom, with anti-inflammatory, antidiabetic, anticancer and antioxidant activity, and polyphenols composed of hydroxyl cassia bark-acid derivatives, flavone-3-alcohol and flavonol retain non-cancer-cells-and-significantly-inhibit glioblastoma viability in a dose-dependent manner, which deserves further investigation as potential anticancer drugs. This paper summarizes the role of ferulic acid in the PI3K / AKT pathway and its mechanism in glioblastoma resistance.