Botulinum Toxin Type A Alleviates Androgenetic Alopecia by Inhibiting Apoptosis of Dermal Papilla Cells via Targeting circ_0135062/miR-506-3p/Bax Axis

Aesthetic Plast Surg. 2024 Apr;48(7):1473-1486. doi: 10.1007/s00266-023-03834-w. Epub 2024 Jan 29.

Abstract

Botulinum toxin type A (BTXA) has the potential to treat androgenetic alopecia (AGA); however, its impact on the apoptosis of dermal papillary cells (DPCs) is not yet fully understood. Noncoding RNAs play a crucial role in AGA. In this study, we investigated the potential mechanism by which BTXA alleviates apoptosis induced by dihydrotestosterone (DHT) in DPCs. We assessed the mRNA levels of circ_0135062, miR-506-3p, and Bax using qRT-PCR. Binding interactions were analyzed using RNA pulldown and dual-luciferase assays. Cell viability was determined using a cell counting kit-8 assay, and cell apoptosis was assessed using flow cytometry, TUNEL assays, and western blotting. Our findings revealed that BTXA inhibited the apoptosis of DPCs treated with DHT. Moreover, circ_0135062 overexpression counteracted the protective effect of BTXA on DHT-treated DPCs. MiR-506-3p was found to interact with Bax and inhibit apoptosis in DPCs by suppressing Bax expression in response to DHT-induced damage. Furthermore, circ_0135062 acted as a sponge for miR-506-3p, thereby inhibiting the targeting of Bax expression by miR-506-3p. In conclusion, BTXA exhibited an antiapoptotic effect on DHT-induced DPC injury via the circ_0135062/miR-506-3p/Bax axis.Level of Evidence II This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

Keywords: Androgenetic alopecia; Bax; Botulinum toxin; Dermal papilla cells; circ_0135062; miR-506-3p.