Choroidal signal hypertransmission on optical coherence tomography imaging: Association with development of geographic atrophy in age-related macular degeneration

Clin Exp Ophthalmol. 2024 Jan 29. doi: 10.1111/ceo.14356. Online ahead of print.

Abstract

Background: To examine the association between large choroidal signal hypertransmission ≥250 μm (LHyperT) on optical coherence tomography (OCT) with the risk of developing geographic atrophy (GA) and compare this risk with those associated with nascent geographic atrophy (nGA).

Methods: Two hundred and eighty eyes from 140 participants with bilateral large drusen and without late age-related macular degeneration (AMD) or nGA at baseline underwent OCT imaging and colour fundus photography (CFP) at 6-monthly intervals up to 5 years. OCT scans were graded for the presence of LHyperT and nGA, and CFPs were graded for the presence of GA.

Results: The five-year incidence of LHyperT and nGA were 37% and 27% respectively (p = 0.003), and the two-year probability of their progression to GA were 17% and 40%, respectively (p = 0.002). LHyperT and nGA explained 81% and 91% of the variance in the time to develop GA, respectively (p = 0.032), and they were both associated with a significantly higher rate of GA development compared to eyes without these lesions (adjusted hazard ratio = 110.8 and 183.2, respectively; p < 0.001 for both).

Conclusions: LHyperT and nGA were both high-risk features for GA development, but the latter showed a higher rate of GA progression and explained a significantly greater proportion of the variance in the time to develop GA. As such, nGA may be a more robust surrogate endpoint than LHyperT for the conventional clinical endpoint of CFP-defined GA for intervention trials in the early stages of AMD.

Keywords: age-related macular degeneration; geographic atrophy; hypertransmission; nascent geographic atrophy; optical coherence tomography.