Surgical phase and instrument recognition: how to identify appropriate dataset splits

Int J Comput Assist Radiol Surg. 2024 Apr;19(4):699-711. doi: 10.1007/s11548-024-03063-9. Epub 2024 Jan 29.

Abstract

Purpose: Machine learning approaches can only be reliably evaluated if training, validation, and test data splits are representative and not affected by the absence of classes. Surgical workflow and instrument recognition are two tasks that are complicated in this manner, because of heavy data imbalances resulting from different length of phases and their potential erratic occurrences. Furthermore, sub-properties like instrument (co-)occurrence are usually not particularly considered when defining the split.

Methods: We present a publicly available data visualization tool that enables interactive exploration of dataset partitions for surgical phase and instrument recognition. The application focuses on the visualization of the occurrence of phases, phase transitions, instruments, and instrument combinations across sets. Particularly, it facilitates assessment of dataset splits, especially regarding identification of sub-optimal dataset splits.

Results: We performed analysis of the datasets Cholec80, CATARACTS, CaDIS, M2CAI-workflow, and M2CAI-tool using the proposed application. We were able to uncover phase transitions, individual instruments, and combinations of surgical instruments that were not represented in one of the sets. Addressing these issues, we identify possible improvements in the splits using our tool. A user study with ten participants demonstrated that the participants were able to successfully solve a selection of data exploration tasks.

Conclusion: In highly unbalanced class distributions, special care should be taken with respect to the selection of an appropriate dataset split because it can greatly influence the assessments of machine learning approaches. Our interactive tool allows for determination of better splits to improve current practices in the field. The live application is available at https://cardio-ai.github.io/endovis-ml/ .

Keywords: Data visualization; Instrument detection; Surgical data science; Surgical workflow recognition.

MeSH terms

  • Humans
  • Machine Learning*
  • Surgical Instruments*
  • Workflow