Parachitinimonas caeni gen. nov., sp. nov., a novel member of family Burkholderiaceae isolated from activated sludge collected in Shenzhen, PR China

Int J Syst Evol Microbiol. 2024 Jan;74(1). doi: 10.1099/ijsem.0.006249.

Abstract

A Gram-stain-negative, strictly aerobic and filamentous bacterial strain, designated as DQS-5T, was isolated from the activated sludge of a municipal sewage treatment plant in Shenzhen, PR China. Optimal growth was observed at 28 °C and pH 7.5. Catalase and oxidase activities were detected. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain DQS-5T was most closely related to the genera Chitinimonas and Chitinivorax (91.0-93.4 % and 92.5 % 16S rRNA gene sequence similarity, respectively) and was close to the member of the family Burkholderiaceae. The complete genome sequence of strain DQS-5T contains 5 653 844 bp and 57.3 mol% G+C. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values between the genome of strain DQS-5T and those of its close relatives were 75.9-77.2, 19.0-20.3 and 57.2-61.8 %, respectively. Chemotaxonomic analysis of strain DQS-5T indicated that the sole respiratory quinone was ubiquinone-8, the predominant cellular fatty acids were C16 : 0 and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), and the major polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, aminophospholipid and aminolipid. The phylogenetic, genotypic, phenotypic and chemotaxonomic data demonstrate that strain DQS-5T represents a novel species in a novel genus within the family Burkholderiaceae, for which the name Parachitinimonas caeni gen. nov., sp. nov., is proposed. Strain DQS-5T (=KCTC 92788T=CCTCC AB 2022320T) is the type and only strain of P. caeni.

Keywords: Parachitinimonas caeni; activated sludge; novel genus.

MeSH terms

  • Bacterial Typing Techniques
  • Base Composition
  • Burkholderiaceae*
  • China
  • DNA, Bacterial / genetics
  • Fatty Acids* / chemistry
  • Phospholipids / chemistry
  • Phylogeny
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA
  • Sewage

Substances

  • Fatty Acids
  • Phospholipids
  • Sewage
  • RNA, Ribosomal, 16S
  • DNA, Bacterial