In Vivo Near-Infrared Fluorescence Resonance Energy Transfer (NIR-FRET) Imaging of MMP-2 in ALI/ARDS in LPS-Treated Mice

ACS Omega. 2024 Jan 11;9(3):3609-3615. doi: 10.1021/acsomega.3c07614. eCollection 2024 Jan 23.

Abstract

Matrix metalloproteinases (MMPs) are zinc-dependent proteinases that are capable of cleavage of extracellular matrix (ECM) proteins and enzymes and play an important role in lung dysfunction. Specifically, MMP-2 is produced in the lung by alveolar epithelial and endothelial cells and other immune cells, such as macrophages. MMP-2 regulatory pathway is initiated in alveolar macrophages during acute lung injury (ALI), which may increase pulmonary inflammation. Therefore, there is a critical need for fast and reliable techniques to track the acute respiratory distress syndrome (ARDS). Here, we describe near-infrared fluorescence resonance energy transfer (NI-FRET) MMP-2-based probe for the in vivo detection of ALI induced by lipopolysaccharides (LPS). LPS-induced MMP-2 was measured using near-infrared (NIR) imaging after 1, 2, 4, 5, and 24 h of LPS exposure. Our results were compared with the data obtained from ELISA and Western blotting, demonstrating that MMP-2 fluorescence probe provide a promising in vivo diagnostic tool for ALI/ARDS in infected mice.