Supramolecular Polymers: Inherently Dynamic Materials

Acc Chem Res. 2024 Feb 6;57(3):349-361. doi: 10.1021/acs.accounts.3c00683. Epub 2024 Jan 26.

Abstract

ConspectusSince its inception in the early 1990s, the field of supramolecular polymers (SPs) has grown into an interdisciplinary field of chemistry. It expanded from the self-assembly of molecular building blocks based on H-bonding into the realm of complex dynamic material, encompassing both supramolecular noncovalent and molecular covalent regimes. It has paved the path for a more diverse field of research into a new class of polymeric materials, coined dynamic polymers or dynamers. Dynamers are bringing a paradigm shift not only in material science research but also in a broad field of applications from self-healing materials to biocompatible polymeric materials. The present Account presents the evolution of supramolecular polymer chemistry from simple linear polymeric chains to complex dynamic polymers imparting novel functional properties, such as component exchange and self-healing. We explore how SPs led to materials of increasing complexity, starting from simple main-chain polymers to the formation of more complex columnar SPs and lateral SPs. The field has experienced three partially overlapping periods. The main goal was first the generation of polymeric entities from various molecular components connected through noncovalent interactions, especially complementary hydrogen bonding recognition patterns as well as stacked columnar SPs. Thereafter, attention was directed in parallel to the exploration of the properties of SPs and their applications as novel materials. In a third period, the dynamic properties of supramolecular polymers were explored, taking advantage of the lability of noncovalent interactions to perform component rearrangement and exchange. We illustrate how the field of SPs has emerged as a multidisciplinary field of chemistry, biology, and materials science with selected examples from the literature. The SPs, specifically dynamic owing to their inherent reversibility, also pave the path to easier sorting and recycling, as desired in the plastics industry.One of the biggest challenges that the plastics industry is facing today is the end-of-life fate of plastics. Plastics that cannot be recycled end up in landfills or are improperly disposed of in rivers and oceans, polluting and damaging the environmental balance irreversibly. Dynamic polymeric materials presenting inherent dynamicity could pave the way for addressing this long-standing challenge of nonrecyclability of plastics. Dynamers formed via noncovalent interactions or reversible covalent bonds can be broken into components that could be easily recycled and reused. Therefore, dynamers could play a pivotal role toward closing the loop for the plastics industry and provide a solution to an elusive circular economy with plastics being an integral part.