DTP-Net: Learning to Reconstruct EEG Signals in Time-Frequency Domain by Multi-Scale Feature Reuse

IEEE J Biomed Health Inform. 2024 May;28(5):2662-2673. doi: 10.1109/JBHI.2024.3358917. Epub 2024 May 6.

Abstract

Electroencephalography (EEG) signals are prone to contamination by noise, such as ocular and muscle artifacts. Minimizing these artifacts is crucial for EEG-based downstream applications like disease diagnosis and brain-computer interface (BCI). This paper presents a new EEG denoising model, DTP-Net. It is a fully convolutional neural network comprising Densely-connected Temporal Pyramids (DTPs) placed between two learnable time-frequency transformations. In the time-frequency domain, DTPs facilitate efficient propagation of multi-scale features extracted from EEG signals of any length, leading to effective noise reduction. Comprehensive experiments on two public semi-simulated datasets demonstrate that the proposed DTP-Net consistently outperforms existing state-of-the-art methods on metrics including relative root mean square error (RRMSE) and signal-to-noise ratio improvement ( ∆SNR). Moreover, the proposed DTP-Net is applied to a BCI classification task, yielding an improvement of up to 5.55% in accuracy. This confirms the potential of DTP-Net for applications in the fields of EEG-based neuroscience and neuro-engineering. An in-depth analysis further illustrates the representation learning behavior of each module in DTP-Net, demonstrating its robustness and reliability.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Brain-Computer Interfaces*
  • Electroencephalography* / methods
  • Humans
  • Neural Networks, Computer
  • Signal Processing, Computer-Assisted*
  • Signal-To-Noise Ratio