Efficient Removal of Hazardous P-Nitroaniline from Wastewater by Using Surface-Activated and Modified Multiwalled Carbon Nanotubes with Mesostructure

Toxics. 2024 Jan 19;12(1):88. doi: 10.3390/toxics12010088.

Abstract

P-nitroaniline (PNA) is an aniline compound with high toxicity and can cause serious harm to aquatic animals and plants. Multiwalled carbon nanotubes (MWCNTs) are a multifunctional carbon-based material that can be applied in energy storage and biochemistry applications and semiconductors as well as for various environmental purposes. In the present study, MWCNTs (CO2-MWCNTs and KOH-MWCNTs) were obtained through CO2 and KOH activation. ACID-MWCNTs were obtained through surface treatment with an H2SO4-HNO3 mixture. Herein, we report, for the first time, the various MWCNTs that were employed as nanoadsorbents to remove PNA from aqueous solution. The MWCNTs had nanowire-like features and different tube lengths. The nanotubular structures were not destroyed after being activated. The KOH-MWCNTs, CO2-MWCNTs, and ACID-MWCNTs had surface areas of 487, 484, and 80 m2/g, respectively, and pore volumes of 1.432, 1.321, and 0.871 cm3/g, respectively. The activated MWCNTs contained C-O functional groups, which facilitate PNA adsorption. To determine the maximum adsorption capacity of the MWCNTs, the influences of several adsorption factors-contact time, solution pH, stirring speed, and amount of adsorbent-on PNA adsorption were investigated. The KOH-MWCNTs had the highest adsorption capacity, followed by the CO2-MWCNTs, pristine MWCNTs, and ACID-MWCNTs. The KOH-MWCNTs exhibited rapid PNA adsorption (>85% within the first 5 min) and high adsorption capacity (171.3 mg/g). Adsorption isotherms and kinetics models were employed to investigate the adsorption mechanism. The results of reutilization experiments revealed that the MWCNTs retained high adsorption capacity after five cycles. The surface-activated and modified MWCNTs synthesized in this study can effectively remove hazardous pollutants from wastewater and may have additional uses.

Keywords: activation; carbon nanotube; carbon–oxygen functional group; p-nitroaniline; recycling.

Grants and funding

This research received no external funding.