Tetrahedral DNA nanostructures enhance transcription isothermal amplification for multiplex detection of non-coding RNAs

Biosens Bioelectron. 2024 Apr 15:250:116055. doi: 10.1016/j.bios.2024.116055. Epub 2024 Jan 19.

Abstract

This study introduces an innovative detection system for multiple cancer biomarkers, employing transcription isothermal amplification methods in conjunction with a tetrahedral DNA nanostructure (TDN). We demonstrate that TDN enhances various transcription isothermal amplification methods by placing DNA probes in proximity. Notably, the TDN-enhanced split T7 promoter-based isothermal transcription amplification with light-up RNA aptamer (STAR) system stands out for its optimal performance and operational simplicity, especially in identifying non-coding RNAs such as microRNAs and long non-coding RNAs (lncRNAs). Multiplex detection of lncRNAs was also achieved by generating distinct light-up RNA aptamers, each emitting unique fluorescence signals. The system effectively identified the target lncRNAs, demonstrating high sensitivity and selectivity in both cell lines and clinical samples. The system, utilizing the single enzyme T7 RNA polymerase, can be easily tailored for alternative targets by substituting target-specific sequences in DNA probes and seamlessly integrated with other isothermal amplification methods for greater sensitivity and accuracy in the detection of multiple cancer biomarkers.

Keywords: Isothermal amplification; Molecular diagnostics; Multiplex detection; Non-coding RNA; Tetrahedral DNA nanostructure.

MeSH terms

  • Aptamers, Nucleotide* / chemistry
  • Biomarkers, Tumor / genetics
  • Biosensing Techniques* / methods
  • DNA / chemistry
  • DNA / genetics
  • DNA Probes
  • Humans
  • Nanostructures*
  • Neoplasms*
  • Nucleic Acid Amplification Techniques / methods
  • RNA, Long Noncoding* / genetics

Substances

  • RNA, Long Noncoding
  • DNA
  • Aptamers, Nucleotide
  • Biomarkers, Tumor
  • DNA Probes