A complex of cadherin 17 with desmocollin 1 and p120-catenin regulates colorectal cancer migration and invasion according to the cell phenotype

J Exp Clin Cancer Res. 2024 Jan 24;43(1):31. doi: 10.1186/s13046-024-02956-6.

Abstract

Background: Cadherin-17 (CDH17), a marker of differentiation in intestinal cells, binds and activates α2β1 integrin to promote cell adhesion and proliferation in colorectal cancer (CRC) metastasis. Furthermore, CDH17 associates with p120- and β-catenin in a manner yet to be fully elucidated. In this report, we explored the molecular mediators involved in this association, their contribution to CRC dissemination and potential therapeutic implications.

Methods: Proteomic and confocal analyses were employed to identify and validate CDH17 interactors. Functional characterization involved the study of proliferation, migration, and invasion in cell lines representative of various phenotypes. Immunohistochemistry was conducted on CRC tissue microarrays (TMA). In vivo animal experiments were carried out for metastatic studies.

Results: We found that desmocollin-1 (DSC1), a desmosomal cadherin, interacts with CDH17 via its extracellular domain. DSC1 depletion led to increased or decreased invasion in CRC cells displaying epithelial or mesenchymal phenotype, respectively, in a process mediated by the association with p120-catenin. Down-regulation of DSC1 resulted in an increased expression of p120-catenin isoform 1 in epithelial cells or a shift in cellular location in mesenchymal cells. Opposite results were observed after forced expression of CDH17. DSC1 is highly expressed in budding cells at the leading edge of the tumor and associates with poor prognosis in the stem-like, mesenchymal CRC subtypes, while correlates with a more favorable prognosis in the less-aggressive subtypes. In vivo experiments demonstrated that DSC1 silencing reduced tumor growth, liver homing, and metastasis in CRC mesenchymal cells. Furthermore, a synthetic peptide derived from CDH17, containing the NLV motif, effectively inhibited invasion and liver homing in vivo, opening up new possibilities for the development of novel therapies focused on desmosomal cadherins.

Conclusions: These findings shed light on the multifaceted roles of CDH17, DSC1, and p120-catenin in CRC metastasis, offering insights into potential therapeutic interventions for targeting desmosomal cadherins in poorly-differentiated carcinomas.

Keywords: CDH17; Colorectal cancer; DSC1; Metastasis; Therapeutic peptide; p120-catenin.

MeSH terms

  • Animals
  • Cadherins
  • Colorectal Neoplasms*
  • Delta Catenin
  • Desmocollins*
  • Proteomics

Substances

  • Desmocollins
  • Delta Catenin
  • Cadherins