Validity and reliability of deriving the autoregulatory plateau through projection pursuit regression from driven methods

Physiol Rep. 2024 Jan;12(2):e15919. doi: 10.14814/phy2.15919.

Abstract

To compare the construct validity and between-day reliability of projection pursuit regression (PPR) from oscillatory lower body negative pressure (OLBNP) and squat-stand maneuvers (SSMs). Nineteen participants completed 5 min of OLBNP and SSMs at driven frequencies of 0.05 and 0.10 Hz across two visits. Autoregulatory plateaus were derived at both point-estimates and across the cardiac cycle. Between-day reliability was assessed with intraclass correlation coefficients (ICCs), Bland-Altman plots with 95% limits of agreement (LOA), coefficient of variation (CoV), and smallest real differences. Construct validity between OLBNP-SSMs were quantified with Bland-Altman plots and Cohen's d. The expected autoregulatory curve with positive rising and negative falling slopes were present in only ~23% of the data. The between-day reliability for the ICCs were poor-to-good with the CoV estimates ranging from ~50% to 70%. The 95% LOA were very wide with an average spread of ~450% for OLBNP and ~350% for SSMs. Plateaus were larger from SSMs compared to OLBNPs (moderate-to-large effect sizes). The cerebral pressure-flow relationship is a complex regulatory process, and the "black-box" nature of this system can make it challenging to quantify. The current data reveals PPR analysis does not always elicit a clear-cut central plateau with distinctive rising/falling slopes.

Keywords: cerebral autoregulation; oscillatory lower body negative pressure; projection pursuit regression; reliability; squat-stand maneuvers; transcranial Doppler ultrasound.

MeSH terms

  • Correlation of Data
  • Heart*
  • Homeostasis
  • Humans
  • Lower Body Negative Pressure*
  • Reproducibility of Results