Non-invasive detection of slow conduction with cardiac magnetic resonance imaging for ventricular tachycardia ablation

Europace. 2024 Feb 1;26(2):euae025. doi: 10.1093/europace/euae025.

Abstract

Aims: Non-invasive myocardial scar characterization with cardiac magnetic resonance (CMR) has been shown to accurately identify conduction channels and can be an important aid for ventricular tachycardia (VT) ablation. A new mapping method based on targeting deceleration zones (DZs) has become one of the most commonly used strategies for VT ablation procedures. The aim of the study was to analyse the capability of CMR to identify DZs and to find predictors of arrhythmogenicity in CMR channels.

Methods and results: Forty-four consecutive patients with structural heart disease and VT undergoing ablation after CMR at a single centre (October 2018 to July 2021) were included (mean age, 64.8 ± 11.6 years; 95.5% male; 70.5% with ischaemic heart disease; a mean ejection fraction of 32.3 ± 7.8%). The characteristics of CMR channels were analysed, and correlations with DZs detected during isochronal late activation mapping in both baseline maps and remaps were determined. Overall, 109 automatically detected CMR channels were analysed (2.48 ± 1.15 per patient; length, 57.91 ± 63.07 mm; conducting channel mass, 2.06 ± 2.67 g; protectedness, 21.44 ± 25.39 mm). Overall, 76.1% of CMR channels were associated with a DZ. A univariate analysis showed that channels associated with DZs were longer [67.81 ± 68.45 vs. 26.31 ± 21.25 mm, odds ratio (OR) 1.03, P = 0.010], with a higher border zone (BZ) mass (2.41 ± 2.91 vs. 0.87 ± 0.86 g, OR 2.46, P = 0.011) and greater protectedness (24.97 ± 27.72 vs. 10.19 ± 9.52 mm, OR 1.08, P = 0.021).

Conclusion: Non-invasive detection of targets for VT ablation is possible with CMR. Deceleration zones found during electroanatomical mapping accurately correlate with CMR channels, especially those with increased length, BZ mass, and protectedness.

Keywords: Cardiac magnetic resonance; Conducting channels; Deceleration zones; Isochronal late activation maps; Ventricular tachycardia ablation.

MeSH terms

  • Aged
  • Arrhythmias, Cardiac
  • Catheter Ablation* / methods
  • Cicatrix / pathology
  • Female
  • Heart Rate / physiology
  • Humans
  • Magnetic Resonance Imaging / methods
  • Male
  • Middle Aged
  • Myocardium / pathology
  • Tachycardia, Ventricular* / diagnostic imaging
  • Tachycardia, Ventricular* / surgery