A Self-Consistent Framework for Tailored Single-Atom Catalysts in Electrocatalytic Nitrogen Reduction

J Phys Chem Lett. 2024 Feb 1;15(4):1089-1096. doi: 10.1021/acs.jpclett.3c03213. Epub 2024 Jan 23.

Abstract

The catalytic activity of single-atom catalysts (SACs) is crucially affected by the actual ligand configurations under the reaction condition; thus, carefully considering the reaction condition is crucial for the theoretical design of SACs. With single metal atoms supported by g-C3N4 as a model system, a self-consistent screening framework is proposed for the theoretical design of SACs with respect to the nitrogen reduction reaction (NRR). Pourbaix diagrams are constructed on the basis of various co-adsorption configurations of N2, H, and OH. Possible stable configurations containing N2 under the expected reaction condition are considered to obtain the limiting potential of NRR, and the stability of the configuration at the calculated UL is rechecked. With this framework, AC stacking of double-layer g-C3N4-supported Nb and AA stacking and AB stacking of double-layer g-C3N4-supported W are predicted to exhibit superior NRR activity with UL values of -0.36, -0.45, and -0.52 V, respectively. This procedure can be widely applied to the screening of SACs for electrocatalytic reactions.