Red blood cell dynamics during malaria infection violate the assumptions of mathematical models of infection dynamics

bioRxiv [Preprint]. 2024 Jan 11:2024.01.10.575051. doi: 10.1101/2024.01.10.575051.

Abstract

For decades, mathematical models have been used to understand the course and outcome of malaria infections (i.e., infection dynamics) and the evolutionary dynamics of the parasites that cause them. A key conclusion of these models is that red blood cell (RBC) availability is a fundamental driver of infection dynamics and parasite trait evolution. The extent to which this conclusion holds will in part depend on model assumptions about the host-mediated processes that regulate RBC availability i.e., removal of uninfected RBCs and supply of RBCs. Diverse mathematical functions have been used to describe host-mediated RBC supply and clearance, but it remains unclear whether they adequately capture the dynamics of RBC supply and clearance during infection. Here, we use a unique dataset, comprising time-series measurements of erythrocyte (i.e., mature RBC) and reticulocyte (i.e., newly supplied RBC) densities during Plasmodium chabaudi malaria infection, and a quantitative data-transformation scheme to elucidate whether RBC dynamics conform to common model assumptions. We found that RBC clearance and supply are not well described by mathematical functions commonly used to model these processes. Furthermore, the temporal dynamics of both processes vary with parasite growth rate in a manner again not captured by existing models. Together, these finding suggest that new model formulations are required if we are to explain and ultimately predict the within-host population dynamics and evolution of malaria parasites.

Keywords: Plasmodium chabaudi; erythropoiesis; growth rate; host response; malaria; red blood cells.

Publication types

  • Preprint