Rapid turnover of CTLA4 is associated with a complex architecture of reversible ubiquitylation

bioRxiv [Preprint]. 2024 Jan 1:2023.12.31.573735. doi: 10.1101/2023.12.31.573735.

Abstract

The immune checkpoint regulator CTLA4 is an unusually short-lived membrane protein. Here we show that its lysosomal degradation is dependent on ubiquitylation at Lysine residues 203 and 213. Inhibition of the v-ATPase partially restores CTLA4 levels following cycloheximide treatment, but also reveals a fraction that is secreted in exosomes. The endosomal deubiquitylase, USP8, interacts with CTLA4 and its loss enhances CTLA4 ubiquitylation in cancer cells, mouse CD4+ T cells and in cancer cell-derived exosomes. Depletion of the USP8 adapter protein, HD-PTP, but not ESCRT-0 recapitulates this cellular phenotype, but shows distinct properties vis-à-vis exosome incorporation. Re-expression of wild-type USP8, but neither a catalytically inactive, nor a localization-compromised ΔMIT domain mutant can rescue delayed degradation of CTLA4, or counteract its accumulation in clustered endosomes. UbiCRest analysis of CTLA4-associated ubiquitin chain linkages identifies a complex mixture of conventional Lys63- and more unusual Lys27- and Lys29-linked polyubiquitin chains that may underly the rapidity of protein turnover.

Keywords: CTLA4; ESCRT-0; TAK-243; USP8; UbiCRest; endocytosis; ubiquitin.

Publication types

  • Preprint