Molecular Machinery of the Triad Holin, Endolysin, and Spanin: Key Players Orchestrating Bacteriophage-Induced Cell Lysis and their Therapeutic Applications

Protein Pept Lett. 2024;31(2):85-96. doi: 10.2174/0109298665181166231212051621.

Abstract

Phage therapy, a promising alternative to combat multidrug-resistant bacterial infections, harnesses the lytic cycle of bacteriophages to target and eliminate bacteria. Key players in this process are the phage lysis proteins, including holin, endolysin, and spanin, which work synergistically to disrupt the bacterial cell wall and induce lysis. Understanding the structure and function of these proteins is crucial for the development of effective therapies. Recombinant versions of these proteins have been engineered to enhance their stability and efficacy. Recent progress in the field has led to the approval of bacteriophage-based therapeutics as drugs, paving the way for their clinical use. These proteins can be combined in phage cocktails or combined with antibiotics to enhance their activity against bacterial biofilms, a common cause of treatment failure. Animal studies and clinical trials are being conducted to evaluate the safety and efficacy of phage therapy in humans. Overall, phage therapy holds great potential as a valuable tool in the fight against multidrug- resistant bacteria, offering hope for the future of infectious disease treatment.

Keywords: Multidrug-resistant; bacteriophage; holin; multigene lysis.; phage endolysin; spanin.

Publication types

  • Review

MeSH terms

  • Animals
  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology
  • Bacteria / drug effects
  • Bacteria / virology
  • Bacterial Infections* / therapy
  • Bacteriolysis
  • Bacteriophages*
  • Drug Resistance, Multiple, Bacterial
  • Endopeptidases* / pharmacology
  • Humans
  • Phage Therapy* / methods
  • Viral Proteins / chemistry
  • Viral Proteins / genetics
  • Viral Proteins / metabolism

Substances

  • Endopeptidases
  • endolysin
  • Viral Proteins
  • Anti-Bacterial Agents