Study on Modeling and Evaluating Alfalfa Yield and Optimal Water Use Efficiency in the Agro-Pastoral Ecotone of Northern China

Plants (Basel). 2024 Jan 14;13(2):229. doi: 10.3390/plants13020229.

Abstract

The agro-pastoral ecotone in northern China is the main production area of agriculture and animal husbandry, in which agricultural development relies entirely on groundwater. Due to the increasing water consumption of groundwater year by year, groundwater resources are becoming increasingly scarce. The substantial water demand and low germination rate in the first year are the main characteristics of alfalfa (Medicago sativa L.) yield in the agro-pastoral ecotone in northern China. Due to unscientific irrigation, water resources are seriously wasted, which restricts the development of local agriculture and animal husbandry. The study constructed the Dssat-Forages-Alfalfa model and used soil water content, leaf area index, and yield data collected with in situ observation experiments in 2022 and 2023 to calibrate and validate the parameters. The study found ARE < 10%, ENRMS < 15%, and R2 ≥ 0.85. The model simulation accuracy was acceptable. The study revealed that the water consumption at the surface soil layer (0-20 cm) was more than 6~12% and 13~31% than that at the 20-40 cm and 40-60 cm soil layers, respectively. The study showed when the irrigation quota was 30 mm, the annual yield of alfalfa (Medicago sativa L.) (7435 kg/ha) was consistent with that of the irrigation quota of 33 mm, and increased by 3.99% to 5.34% and 6.86% to 10.67% compared with that of irrigation quotas of 27 mm and 24 mm, respectively. To ensure the germination rate of alfalfa (Medicago sativa L.), it is recommended to control the initial soil water content at 0.8 θfc~1.0 θfc, with an irrigation quota of 30 mm, which was the best scheme for water-use efficiency and economic yield. The study aimed to provide technological support for the rational utilization of groundwater and the scientific improvement of alfalfa yield in the agro-pastoral ecotone in northern China.

Keywords: Dssat-Forages-Alfalfa model; agro-pastoral ecotone; alfalfa; water use; yield.