Assessment of Residual Stresses in Laser Powder Bed Fusion Manufactured IN 625

Materials (Basel). 2024 Jan 14;17(2):413. doi: 10.3390/ma17020413.

Abstract

Residual stresses pose significant challenges in the powder bed fusion of metals using a laser (PBF-LB/M), impacting both the dimensional accuracy and mechanical properties. This study quantitatively analyzes deformation and residual stresses in additively manufactured Inconel 625. Investigating both as-built and stress-relieved states with varied scanning strategies (90°, 67°, strip, and 90° chessboard) in PBF-LB/M/IN625, distortion is evaluated using the bridge curvature method. Quantitative measurements are obtained through 3D laser surface scanning on pairs of bridge specimens-one measured before and after detachment from the build plate, and the other undergoing stress-relieving heat treatment at 870 °C for 1 h. The findings reveal that, among as-built specimens, the 90° and 90° strip strategies induce the least distortion, followed by the 67° and chessboard 90° strategies. Furthermore, stress-relief treatment significantly reduces residual stress levels. After post-treatment, the deformation in X-axis samples with 90° and 90° strip strategies decreases by 39% and 42%. In contrast, the samples with the 67° and 90° checkerboard strategies exhibit more pronounced reductions of 44% and 63%, respectively. These quantitative results contribute useful insights for optimizing PBF-LB/M/IN625 processes in additive manufacturing.

Keywords: Inconel 625; PBF-LB/M/IN625; bridge specimens; distortion; residual stresses.