Predicting the Elastic Modulus of Recycled Concrete Considering Material Nonuniformity: Mesoscale Numerical Method

Materials (Basel). 2024 Jan 12;17(2):379. doi: 10.3390/ma17020379.

Abstract

The evaluation of the elastic modulus of recycled concrete is one of the focuses of civil engineering and structural engineering, which is not only related to the stability of building structures but also related to the resource utilization of concrete. Therefore, based on the IRSM method in mesoscale, a novel model for predicting the elastic modulus of recycled concrete is proposed which has the advantages of being low-cost and high-precision, amongst others, compared to theoretical and experimental methods. Then, the influence of coarse aggregate, contact surface, gelling material, and air bubbles on the elastic modulus of recycled concrete is studied. The IRSM model includes four processes: Identification, Reconstruction, Simulation, and Monte Carlo, which can accurately reconstruct the geometric characteristics of coarse aggregate, efficiently reconstruct the coarse aggregate accumulation model, and quickly analyze the elastic modulus of concrete, as well as fully consider the nonuniform characteristics of coarse aggregate distribution and shape. Compared with the experimental results, the error is less than 5%, which verifies the rationality of the IRSM method. The results of the parametric analysis show that the influence of each factor on the elastic modulus of concrete in descending order is elastic modulus of cement, elastic modulus of coarse aggregate, content of coarse aggregate, content of air voids, elastic modulus of contacting surface, and thickness of contacting surface, and the corresponding Pearson's Coefficients are 0.688, 0.427, 0.412, -0.269, 0.188, and -0.061, respectively, in which the content of air voids and thickness of contact surface have a negative effect on the elastic modulus of concrete. These influences mainly affect the deformation resistance (elastic modulus) of concrete through "force chain" adjustment, including the force transfer effect, number of paths, and integrity.

Keywords: Monte Carlo; concrete; elastic modulus; mesoscale; numerical simulation.