Development of TiO2-CaCO3 Based Composites as an Affordable Building Material for the Photocatalytic Abatement of Hazardous NOx from the Environment

Nanomaterials (Basel). 2024 Jan 6;14(2):136. doi: 10.3390/nano14020136.

Abstract

This study explores the depollution activity of a photocatalytic cementitious composite comprising various compositions of n-TiO2 and CaCO3. The photocatalytic activity of the CaCO3-TiO2 composite material is assessed for the aqueous photodegradation efficiency of MB dye solution and NOx under UV light exposure. The catalyst CaCO3-TiO2 exhibits the importance of an optimal balance between CaCO3 and n-TiO2 for the highest NOx removal of 60% and MB dye removal of 74.6%. The observed trends in the photodegradation of NOx removal efficiencies suggest a complex interplay between CaCO3 and TiO2 content in the CaCO3-n-TiO2 composite catalysts. This pollutant removal efficiency is attributed to the synergistic effect between CaCO3 and n-TiO2, where a higher percentage of n-TiO2 appeared to enhance the photocatalytic activity. It is recommended that CaCO3-TiO2 photocatalysts are effectiveness in water and air purification, as well as for being cost-effective construction materials.

Keywords: NOx; composite; construction materials; depollution; photocatalysts; urban environment.