Effect of altitude and acetazolamide on postural control in healthy lowlanders 40 years of age or older. Randomized, placebo-controlled trial

Front Physiol. 2024 Jan 4:14:1274111. doi: 10.3389/fphys.2023.1274111. eCollection 2023.

Abstract

Background: Hypoxia and old age impair postural control and may therefore enhance the risk of accidents. We investigated whether acetazolamide, the recommended drug for prevention of acute mountain sickness, may prevent altitude-induced deterioration of postural control in older persons. Methods: In this parallel-design trial, 95 healthy volunteers, 40 years of age or older, living <1,000 m, were randomized to preventive therapy with acetazolamide (375 mg/d) or placebo starting 24 h before and during a 2-day sojourn at 3,100 m. Instability of postural control was quantified by a balance platform with the center of pressure path length (COPL) as primary outcome while pulse oximetry (SpO2) was monitored. Effects of altitude and treatment on COPL were evaluated by ordered logistic regression. www.ClinicalTrials.gov NCT03536429. Results: In participants taking placebo, ascent from 760 m to 3,100 m increased median COPL from 25.8 cm to 27.6 cm (odds ratio 3.80, 95%CI 2.53-5.70) and decreased SpO2 from 96% to 91% (odds ratio 0.0003, 95%CI 0.0002-0.0007); in participants taking acetazolamide, altitude ascent increased COPL from 24.6 cm to 27.3 cm (odds ratio 2.22, 95%CI 1.57-3.13), while SpO2 decreased from 96% to 93% (odds ratio 0.007, 95%CI 0.004-0.012). Altitude-induced increases in COPL were smaller with acetazolamide vs. placebo (odds ratio 0.58, 95%CI 0.34-0.99) while drops in SpO2 were mitigated (odds ratio 19.2, 95%CI 9.9-37.6). Conclusion: In healthy individuals, 40 years of age or older, postural control was impaired after spending a night at 3,100 m. The altitude-induced deterioration of postural control was mitigated by acetazolamide, most likely due to the associated improvement in oxygenation.

Keywords: acetazolamide; age; altitude (MeSH); altitude illness; altitude-related adverse health effects; hypoxia; postural control; prevention.

Associated data

  • ClinicalTrials.gov/NCT03536429

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This study was supported by grants from the Swiss National Science Foundation (grant Nos 32003B_172980 and 32003B_192048), the Swiss Lung Foundation (Zurich, Switzerland), the Bockhoff Foundation (Zurich, Switzerland).