Synthesis of Tubular Hydroxyapatite and Its Application in Polycaprolactone Scaffold Materials

J Funct Biomater. 2024 Jan 14;15(1):22. doi: 10.3390/jfb15010022.

Abstract

Nano-hydroxyapatite (HAp) is an ideal material in the field of biomedicine due to its good biocompatibility and bioactivity. However, a significant drawback of pure HAp materials is their inferior mechanical properties. Therefore, in this rigorous investigation, the optimal calcium-to-phosphorus ratio for the synthesis of HAp was meticulously delineated, followed by its nuanced modification using KH550 (γ-aminopropyltriethoxysilane). This was further amalgamated with polycaprolactone (PCL) with the aim of providing a superior material alternative within the domain of bone scaffold materials. The post-modified HAp demonstrated enhanced interfacial compatibility with PCL, bestowing the composite with superior mechanical characteristics, notably a peak bending strength of 6.38 ± 0.037 MPa and a tensile strength of 3.71 ± 0.040 MPa. Scanning electron microscope (SEM) imagery revealed an intriguing characteristic of the composite: an initial ascension in porosity upon HAp integration, subsequently followed by a decline. Beyond this, the composite not only exhibited stellar auto-degradation prowess but also realized a sustained release cycle of 24 h, markedly optimizing drug utility efficiency. A kinetic model for drug dispensation was developed, positing an adherence to a pseudo-second-order kinetic principle. In tandem, through the formulation of an intra-particle diffusion model, the diffusion mechanisms pre- and post-modification were deeply probed. Cytotoxicity assays underscored the composite's exemplary biocompatibility. Such findings accentuate the vast potential of the modified HAp-PCL composite in bone tissue engineering, heralding a novel and efficacious avenue for impending bone defect amelioration.

Keywords: PCL; artificial bone scaffold; solvothermal reaction method; tubular HAp; γ-aminopropyltriethoxysilane (KH550).