An Interpretable Approach with Explainable AI for Heart Stroke Prediction

Diagnostics (Basel). 2024 Jan 5;14(2):128. doi: 10.3390/diagnostics14020128.

Abstract

Heart strokes are a significant global health concern, profoundly affecting the wellbeing of the population. Many research endeavors have focused on developing predictive models for heart strokes using ML and DL techniques. Nevertheless, prior studies have often failed to bridge the gap between complex ML models and their interpretability in clinical contexts, leaving healthcare professionals hesitant to embrace them for critical decision-making. This research introduces a meticulously designed, effective, and easily interpretable approach for heart stroke prediction, empowered by explainable AI techniques. Our contributions include a meticulously designed model, incorporating pivotal techniques such as resampling, data leakage prevention, feature selection, and emphasizing the model's comprehensibility for healthcare practitioners. This multifaceted approach holds the potential to significantly impact the field of healthcare by offering a reliable and understandable tool for heart stroke prediction. In our research, we harnessed the potential of the Stroke Prediction Dataset, a valuable resource containing 11 distinct attributes. Applying these techniques, including model interpretability measures such as permutation importance and explainability methods like LIME, has achieved impressive results. While permutation importance provides insights into feature importance globally, LIME complements this by offering local and instance-specific explanations. Together, they contribute to a comprehensive understanding of the Artificial Neural Network (ANN) model. The combination of these techniques not only aids in understanding the features that drive overall model performance but also helps in interpreting and validating individual predictions. The ANN model has achieved an outstanding accuracy rate of 95%.

Keywords: Artificial Neural Network; LIME tabular; data leakage; deep learning; explainable AI; feature selection; sampling.

Grants and funding

This research received no external funding.