Fluorimetric determination of aqueous formaldehyde employing heating and ultrasound-assisted approach through its derivatization with a ß-diketone-nickel(2+) complex immobilized in a PMMA flow cell

Spectrochim Acta A Mol Biomol Spectrosc. 2024 Apr 5:310:123792. doi: 10.1016/j.saa.2023.123792. Epub 2023 Dec 29.

Abstract

Formaldehyde (FA) is a highly toxic substance present in many matrices, including freshwater as well as found in natural mechanisms such as rainfall and combustion of organic matter. Consumption of water contaminated with high levels of FA can cause severe short-term or long-term health problems. Due to these health risks, procedures are necessary to determine and quantify FA in aqua sources This paper reports on a study of fluorimetric determination of FA using a nickel(2 + )-diketonate coordination compound immobilized as a solid precursor. The compound was characterized by electronic absorption, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetry (TG), optical microscopy (OM), and scanner electron microscopy (SEM). The methodology was based on the reaction of the synthesized compound with an ammoniacal buffer generating a selective reagent for formaldehyde: fluoral-P. The product of the reaction generates 3,5-diacetyl-1,4-dihydrolutidine (DDL), which is responsible for the fluorescence of the system. Several parameters such as temperature, duration of heating time, and dilution effect with the best effects were studied to carry out FA determination. Under the optimum experimental conditions, a linear response ranging from 1.0 to 10.0 mg/L FA (R = 0.997 and n = 10), and a detection (3σ criterion) and quantification (10 σ criterion) limit estimated at 0.129 and 0.389 mg/L, respectively were achieved. The FA analysis was able to be conducted in 05 min with a relative standard deviation estimated at 1.10 %.

Keywords: Coordination Chemistry; Flow analysis; Fluoral-P; Formol; Volatile Organic compounds.