Preparation, Characterization, and Anticancer Activity Assessment of Chitosan/TPP Nanoparticles Loaded with Echis carinatus Venom

Anticancer Agents Med Chem. 2024;24(7):533-543. doi: 10.2174/0118715206279731231129105221.

Abstract

Aims and background: Echis carinatus venom is a toxic substance naturally produced by special glands in this snake species. Alongside various toxic properties, this venom has been used for its therapeutic effects, which are applicable in treating various cancers (liver, breast, etc.).

Objective: Nanotechnology-based drug delivery systems are suitable for protecting Echis carinatus venom against destruction and unwanted absorption. They can manage its controlled transfer and absorption, significantly reducing side effects.

Methods: In the present study, chitosan nanoparticles were prepared using the ionotropic gelation method with emulsion cross-linking. The venom's encapsulation efficiency, loading capacity, and release rate were calculated at certain time points. Moreover, the nanoparticles' optimal formulation and cytotoxic effects were determined using the MTT assay.

Results: The optimized nanoparticle formulation increases cell death induction in various cancerous cell lines. Moreover, chitosan nanoparticles loaded with Echis carinatus venom had a significant rate of cytotoxicity against cancer cells.

Conclusion: It is proposed that this formulation may act as a suitable candidate for more extensive assessments of cancer treatment using nanotechnology-based drug delivery systems.

Keywords: Echis carinatus; anticancer activity; chitosan; nanoparticle; nanoparticles.; tripolyphosphate.

MeSH terms

  • Animals
  • Antineoplastic Agents* / chemistry
  • Antineoplastic Agents* / pharmacology
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Cell Survival* / drug effects
  • Chitosan* / chemistry
  • Chitosan* / pharmacology
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor*
  • Echis
  • Humans
  • Molecular Structure
  • Nanoparticles* / chemistry
  • Particle Size
  • Polyphosphates
  • Structure-Activity Relationship
  • Venomous Snakes
  • Viper Venoms / chemistry
  • Viper Venoms / pharmacology
  • Viperidae

Substances

  • Chitosan
  • Antineoplastic Agents
  • Viper Venoms
  • triphosphoric acid
  • Polyphosphates

Supplementary concepts

  • Echis carinatus