Ligand-binding properties of XaffOBP9, a Minus-C odorant-binding protein from Xyleborus affinis (Coleoptera: Curculionidae: Scolytinae)

Front Physiol. 2024 Jan 3:14:1326099. doi: 10.3389/fphys.2023.1326099. eCollection 2023.

Abstract

Xyleborus affinis, one of the most important pests of rubber trees, has caused severe damage to the natural rubber industry in Hainan province. The ability to detect host plants through a sensitive and specific olfactory system is crucial for Xyleborus affinis. Odorant binding proteins (OBPs) are believed to bind and carry hydrophobic active compounds from the environment to the surface of olfactory receptor neurons. To investigate the potential functional role of the highly expressed XaffOBP9 in binding with semiochemicals, we cloned and analyzed the cDNA sequence of XaffOBP9. The results showed that XaffOBP9 contains a 411bp open reading frame that encodes 136 amino acids. Then XaffOBP9 was expressed in Escherichia coli. The binding affinity of the recombinant OBP to 15 different ligands (14 host plant volatiles and 1 aggregation pheromone) was then examined using a fluorescence competitive binding approach. The results demonstrated that XaffOBP9 exhibited broad binding capabilities and strong affinities for 14 ligands. The structure of XaffOBP9 and its interactions with fourteen ligands were further analyzed by modeling and molecular docking, respectively. Based on the docking result, we found hydrophobic interactions are important between XaffOBP9 to these ligands and three amino acid residues (L71, Y106, and L114) were highly overlapped and contributed to the interaction with ligands. Mutation functional assays confirmed that the mutant L114A showed significantly reduced binding capacity to these ligands. This study suggested that XaffOBP9 may be involved in the chemoreception of semiochemicals and that it is helpful for the integrated management of X. affinis.

Keywords: Xyleborus affinis; competitive binding assay; key binding site; odorant-binding proteins; site-directed mutagenesis.

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This research was funded by the National Natural Science Foundation of China (32060644), and Hainan Provincial Natural Science Foundation of China (322MS012).