One-pot synthesis optimization of thiol-capped SnS and SnS/ZnS QDs for photocatalytic degradation of Rhodamine 6G

Heliyon. 2024 Jan 5;10(1):e24191. doi: 10.1016/j.heliyon.2024.e24191. eCollection 2024 Jan 15.

Abstract

Interest in SnS-based quantum dots (QDs) has increased due to their low toxicity, widespread natural availability, and superior electro-optical characteristics suitable for photodegradation applications. Herein, we report the synthesis of SnS-based QDs using thiourea and tin (II)chloride as salt precursors. The study explored the impact of various synthetic parameters such as pH, capping ligand, Sn:S ratio, reaction solvent, and ZnS shell on the optical characteristics of the synthesized QDs. The optimal QDs properties were observed at pH = 3 and Sn:S ratio = 1:1. Transmission electron microscopy analysis showed spherical nanoparticles, while the Fourier Transform Infrared spectroscopy revealed QDs with thiol capping. Time-dependent studies revealed that when the QDs were synthesized using propylene glycol, the ultraviolet-visibile (UV-vis) spectrum exhibited an increase in absorbance over time and improved stability compared to aqueous synthesized QDs. SnS/ZnS QDs capped with 3-mercaptopropanoic acid exhibited improved photoluminscence (PL) emissions, stability, and aqueous dispersion compared to glutathione and l-Cysteine as thiol-capping agents. The photocatalytic activity of SnS/ZnS QDs was assessed against Rhodamine 6G and increased to 65 % when passivated with ZnS compared to 31 % for the core SnS QDs. With the given findings, this study supports the stability and effectiveness of the SnS/ZnS QDs as a viable dye degradant.

Keywords: Dye degradation; Quantum dots; Rhodamine 6G; SnS; SnS/ZnS; Thiol capping.