A preliminary attempt at capacitive deionization with PVA/PSS gel coating as an alternative to ion exchange membrane

Environ Technol. 2024 Jan 17:1-13. doi: 10.1080/09593330.2024.2304657. Online ahead of print.

Abstract

PVA/PSS composite gel membrane electrode for membrane capacitive deionization (MCDI) was fabricated and characterised in the present study. The composite electrode with ion exchange surface is prepared by coating glutaraldehyde cross-linked polyvinyl alcohol (PVA) composite hydrogel, with Poly (Sodium 4-Styrenesulfonate) (PSS) added into the network, on the surface of activated carbon (AC) electrode. The feasibility of the gel membrane is analyzed by rheological, swelling rates and ion exchange capacity tests. Then electrochemical test and desalination test are used to study the performance of the MCDI electrode. The results show that coating of composite hydrogel layer improved the hydrophilicity, specific capacitance and lower interfacial electron transfer resistance of the electrode. Finally, we assemble the asymmetrical CDI cell with PVA/PSS composite gel electrode and AC electrode. Compared with the AC electrode, the salt adsorption capacity of PVA6-PSS15 can reach 18.9 mg g-1 and stable charge efficiency at 73.0% at operating voltage of 1.2 V. The decrease in specific capacitance of PVA6-PSS15 after 50 cycles is 1.33%, indicating that the electrode has a good cycling life. The gel membrane coated electrode prepared by PSS provides a new idea for the development of MCDI.

Keywords: Membrane capacitive deionization; composite gel electrode; cycling stability; desalting performance; ion exchange coating.