Silica nanoparticles conferring resistance to bacterial wilt in peanut (Arachis hypogaea L.)

Sci Total Environ. 2024 Mar 10:915:170112. doi: 10.1016/j.scitotenv.2024.170112. Epub 2024 Jan 15.

Abstract

Peanut bacterial wilt (PBW) caused by the pathogen Ralstonia solanacearum severely affects the growth and yield potential of peanut crop. In this study, we synthesized silica nanoparticles (SiO2 NPs), a prospective efficient management approach to control PBW, and conducted a hydroponic experiment to investigate the effects of different SiO2 NPs treatments (i.e., 0, 100, and 500 mg L-1 as NP0, NP100, and NP500, respectively) on promoting plant growth and resistance to R. solanacearum. Results indicated that the disease indices of NP100 and NP500 decreased by 51.5 % and 55.4 % as compared with NP0 under R. solanacearum inoculation, respectively, while the fresh and dry weights and shoot length of NP100 and NP500 increased by 7.62-42.05 %, 9.45-32.06 %, and 2.37-17.83 %, respectively. Furthermore, SiO2 NPs induced an improvement in physio-biochemical enzymes (superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, and lipoxygenase) which eliminated the excess production of hydrogen peroxide, superoxide anions, and malondialdehyde to alleviate PBW stress. Notably, the targeted metabolomic analysis indicated that SiO2 NPs enhanced salicylic acid (SA) contents, which involved the induction of systemic acquired resistance (SAR). Moreover, the transcriptomic analysis revealed that SiO2 NPs modulated the expression of multiple transcription factors (TFs) involved in the hormone pathway, such as AHLs, and the identification of hormone pathways related to plant defense responses, such as the SA pathway, which activated SA-dependent defense mechanisms. Meanwhile, the up-regulated expression of the SA-metabolism gene, salicylate carboxymethyltransferase (SAMT), initiated SAR to promote PBW resistance. Overall, our findings revealed that SiO2 NPs, functioning as a plant elicitor, could effectively modulate physiological enzyme activities and enhance SA contents through the regulation of SA-metabolism genes to confer the PBW resistance in peanuts, which highlighted the potential of SiO2 NPs for sustainable agricultural practices.

Keywords: Bacterial wilt resistance; Peanut; Ralstonia solanacearum; Salicylic acid metabolism; Silica nanoparticles.

MeSH terms

  • Arachis* / metabolism
  • Hormones
  • Plant Diseases / microbiology
  • Plants / metabolism
  • Prospective Studies
  • Salicylic Acid
  • Silicon Dioxide*

Substances

  • Silicon Dioxide
  • Salicylic Acid
  • Hormones